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Abstract:28

For the aerosol variables in the model for simulating aerosol interactions29

and chemistry (MOSAIC)-4bin chemical scheme in the Weather Research and30

Forecasting–Chemistry (WRF–Chem) model, this study presents an31

observation forward aerosol extinction coefficient (AEC) and aerosol mass32

concentration (AMC) operator and corresponding adjoint based on the33

interagency monitoring of protected visual environments (IMPROVE)34

equation, and then a three-dimensional variational (3-DVAR) data assimilation35

system (DA) is developed for lidar AECs and AMCs. DA experiments are36

conducted based on AEC profiles measured by five light detection and ranging37

(lidar) systems as well as mass concentration (MC) data measured at over38

1,500 ground environmental monitoring stations across China for particulate39

matter 2.5 µm or less in diameter (PM2.5) and PM between 2.5 and 10 µm in40

diameter (PM10). An experiment comparing assimilated and without41

assimilated measurements finds the following. While only five lidars were42

available within the simulation region (approximately 2.33 million km2 in43

size), assimilating lidar AEC data alone can effectively improve the accuracy44

of the initial field of the WRF–Chem as well as its forecast performance for45

PM2.5MCs. Compared to the without assimilated experiment, DA reduces the46

root mean square error of surface PM2.5MCs in the initial field of the model by47

10.5 μg/m3 (17.6%). Moreover, the positive effect resulting from the48

optimization of the initial field for AMCs can last for more than 24 h. By49

taking advantage of lidar aerosol vertical profile information and the50

near-surface PM MC observations, assimilating lidar AEC and surface PM2.551

(PM10) simultaneously can effectively integrate their observed information and52

generate a more accurate 3D aerosol analysis field.53

54

55
56
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1. Introduction57

Aerosol data assimilation (DA) generates a three-dimensional (3D)58

gridded analysis field capable of describing the spatial distribution of aerosols59

by integrating numerical forecasts produced by an air quality model (AQM)60

and measured aerosol data. With integrated information from various sources,61

this analysis field can more accurately describe the 3D distribution pattern of62

aerosols (Carmichael et al., 2008; Benedetti et al., 2009; Sandu et al., 2011;63

Bannister, 2017). On the one hand, the analysis field generated by DA can be64

used to effectively study atmospheric aerosol transmission patterns by65

analyzing products of a certain time series and, on this basis, further examine66

the effects of aerosols on human health, the environment, the weather, and the67

climate (Baraskar et al., 2016). On the other hand, the analysis field can be68

used as the initial chemical conditions for an AQM. The forecast performance69

of the AQM for aerosols can then be enhanced by improving the accuracy of70

the initial chemical conditions (Wu et al., 2015).71

Compared to meteorological and marine DA, aerosol DA techniques are72

still undeveloped. There is also a lack of variety when it comes to assimilable73

measured data, which mainly include conventional surface aerosol mass74

concentration (AMC) data and satellite-derived aerosol optical depth (AOD)75

data. Of these two types of data, surface AMC data directly provide mass76

concentration (MC) information for near-surface aerosols. The AOD is a77

measure of the total extinction effects of aerosols in the vertical atmospheric78

column. Thus, AOD data indirectly provide atmospheric-column79

concentration information of aerosols. Assimilating either of these two types80

of data can significantly improve the accuracy of the aerosol analysis field81

(Tombette et al., 2008; Niu et al., 2008; Schwartz et al., 2012; Jiang et al.,82

2013; Li et al., 2013; Saide et al., 2013; Yumimoto et al., 2015, 2016; Tang et83

al., 2017; Peng et al., 2017; Xia et al., 2019; Wang et al., 2020), but these two84

types of data are unable to provide vertical aerosol profiles. Consequently,85
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while these two types of data are abundant, have relatively high horizontal86

resolutions, and cover a wide range of space, they play a very limited role in87

optimizing the vertical structure of aerosols in the analysis field. To further88

improve the accuracy of the vertical structure of aerosols, it is necessary to89

assimilate measurements that contain vertical aerosol profile information.90

Zang et al. (2016) assimilated aircraft-measured vertical concentration profiles91

of aerosol components and found that while the profile data were limited in92

quantity and covered a relatively small area, they could still significantly93

improve the forecast accuracy of the AQM. Since direct observations of94

concentration profiles require great amounts of labor and financial resources,95

relatively few studies involving the acquisition and assimilation of this type of96

data have been reported.97

Light detection and ranging (lidar) can be used to capture98

aerosol-backscattered laser signals at various heights. By inverting these99

signals, the aerosol extinction coefficient (AEC) and aerosol backscattering100

coefficient (ABC) can be determined, which indirectly provide vertical AMC101

profile information (Fernald et al., 1984; Sugimoto et al., 2008, Raut et al.,102

2009). Assimilating lidar aerosol data can help to improve the accuracy of the103

vertical structure of aerosols in the analysis field (Sugimoto et al., 2009;104

Tesche et al., 2007; Dilip et al., 2009; Young, S. A., and M. A. Vaughan, 2009;105

Burton et al., 2010; Lolli et al., 2014; Chen et al., 2015). In addition, with the106

increasing number of lidar stations and the development of lidar network107

detection technology, there is great theoretical and application value to108

studying lidar DA in order to generate more accurate 3D aerosol analysis109

fields.110

Compared to the assimilation of direct AMC measurements, the111

assimilation of lidar AEC data faces myriad difficulties, of which establishing112

an observation operator for the DA cost function is the most challenging. AEC113

is the object of DA (i.e., observation variable), whereas the AMCs of various114
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types of aerosol variables in the AQM are to be optimized. To directly115

determine optimal model aerosol variables by solving the DA cost function, it116

is necessary to map the aerosol variables in the AQM to the observation space117

by conducting a forward process on the observation operator (Kahnert et al.,118

2008), corresponding to the calculation of the AMC from the AEC. In addition,119

in 3D variational DA, it is also necessary to conduct the reverse process on the120

observation operator when calculating the gradient of the cost function (Sandu121

et al., 2011). The computational program for this adjoint process on the122

observation operator relies on its forward process. The computational load and123

the size of the program code increase nonlinearly with the complexity of the124

forward process. Moreover, when it comes to aerosol variables, there are125

many kinds of chemicals and particle-size bins. As a result, the chemical126

model inherently involves a high computational load. Therefore, when using a127

variational method to assimilate lidar data, it is necessary to take into128

consideration both the accuracy and complexity of the observation operator.129

Currently, there are three main methods that could be used to design130

observation operators. (1) Directly using the Mie equation. Under the131

assumption that aerosol particles are uniform and spherical, the Mie equation132

can describe the scattering and extinction properties of aerosol particles of any133

scale and with any chemical and physical parameters (Cheng et al., 2019).134

However, since accurately solving the Mie equation involves a nonlinear135

calculation process that contains iterations, it is extremely complicated to136

implement, upgrade, and maintain the program for the reverse process on the137

observation operator. In addition, due to the lack of reliable measurements of138

essential aerosol parameters (e.g., complex refractive index, particle number139

spectrum, and hygroscopicity), in practice it is necessary to introduce140

assumptions about these parameters in DA schemes. This renders it difficult to141

realize the high-accuracy advantage of DA schemes in practice. (2) Using the142

community radiative transfer model (CRTM). This model is advantageous143
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because it gives the Jacobian term needed for the reverse process on the144

observation operator when conducting its forward process, so that introducing145

the CRTM to a DA scheme does not require separate numerical computational146

programming for the reverse process on the observation operator (Liu and147

Weng, 2006). DA schemes based on the CRTM have been applied in AOD148

DA research and yielded excellent results (Liu et al., 2011). However, the149

CRTM was developed for the Goddard Chemistry Aerosol Radiation and150

Transport (GOCART) aerosol scheme in the Weather Research and151

Forecasting–Chemistry (WRF–Chem) model. As a result, when applying the152

CRTM to other AQMs and aerosol schemes, it is necessary to design153

corresponding variable transformation interfaces (Cheng et al., 2019), which154

will introduce additional errors. (3) Using the interagency monitoring of155

protected visual environments (IMPROVE) equation. The IMPROVE156

equation maps a relation between AMC and AEC (Lowenthal et al,. 2003;157

Ryan et al,. 2005; Pitchford et al,. 2007; Gordon et al,. 2018). With relatively158

high computational accuracy, this method has been used to evaluate model159

performance and the extinction contributions of various aerosols (Kim et al.,160

2006; Roy et al., 2007; Tao et al., 2009, 2012, 2014; Cao et al., 2012a, 2012b).161

In addition, as its highest-order term is quadratic, the IMPROVE equation has162

low nonlinearity. Therefore, using the IMPROVE equation to design an163

observation operator can significantly reduce the complexity of the DA164

program. To date, no operator design based on the IMPROVE equation and165

subsequent variational lidar DA have been reported.166

Some progress has been made in lidar DA. For example, Sekiyama et al.167

(2010) used the Kalman filter DA method to assimilate ABC and AEC168

profiles acquired by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite169

Observations mission and applied the assimilated data to a global chemical170

transport model. Wang et al. (2013, 2014a, and 2014b) studied the171

assimilation of range-corrected lidar signals using the optimal interpolation172
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DA method and conducted an assimilation experiment based on data captured173

by 12 lidar positioned in the Mediterranean Basin and one lidar positioned on174

the French island of Corsica. They found that the improvement brought by DA175

to the forecast performance for PM2.5 lasted for approximately 36 hours.176

However, in the above-mentioned studies, sequential DA methods were used,177

and there is no particular need to take into consideration the complexity of the178

observation operator. Cheng et al. (2019) assimilated lidar AEC profiles using179

a 3D variational DA method with an observation operator based on the CRTM,180

which was designed for the relatively simple GOCART dust aerosol scheme.181

This study presents an observation operator and corresponding adjoint182

module developed for the AEC based on the IMPROVE equation. This183

observation operator module is introduced into the DA system developed by184

Li et al. (2013) and Zang et al. (2016) for the model for simulating aerosol185

interactions and chemistry (MOSAIC) aerosol scheme oriented to the186

WRF–Chem model. DA and forecast experiments are conducted based on data187

captured by five lidars (located in Beijing, Shijiazhuang, Taiyuan, Xuzhou,188

and Wuhu, respectively) as well as data collected at approximately 1,500189

ground environmental monitoring stations for PM2.5 and PM10.190

2. Materials and Methods191

2.1. AQM192

The WRF–Chem model version 3.9.1 was selected as the AQM. The193

model has 40 vertical layers between the surface and 50 hPa, with the194

resolution gradually decrease from the bottom up. The model domains are195

double-nested, and the second domain (D02) is centered at (114.57°E,196

37.98°N) and has 175×166 grid points with a grid interval of 9 km. D02197

covers the central and eastern regions of China (most of North China, northern198

Central China, northern East China, and eastern Northwest China) (Figure 1).199
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The MOSAIC_4bin aerosol scheme was adopted for simulations. This scheme200

can describe eight aerosol types. For each aerosol type, there are four201

particle-size bins (4bin). The following summarizes other physical and202

chemical schemes used in this study: the carbon-bond mechanism version Z203

(CBMZ) chemical reaction mechanism, the fast-J photolysis calculation204

scheme, the rapid radiative transfer model for general circulation models205

(RRTMG) shortwave radiation scheme, the RRTMG longwave radiation206

scheme, the WRF single-moment 5-class microphysical scheme, the unified207

Noah land-surface parameterization scheme, the Grell 3D ensemble cumulus208

parameterization scheme, the Yonsei University planetary boundary layer209

scheme, and the revised MM5 Monin–Obukhov near-surface layer scheme.210

211

2.2. Data212

AEC profiles used in this study were derived from data captured by five213

lidars (positioned in Beijing, Shijiazhuang, Taiyuan, Xuzhou, and Wuhu,214

respectively) between 0000 and 1200 Coordinated Universal Time (UTC) on215

November 13, 2018 (Figure 1) at a wavelength of 532 nm. The temporal216

resolution of the data measured by the lidars in Shijiazhuang, Taiyuan,217

Xuzhou, and Wuhu is 1 min, i.e., data were captured and a vertical AEC218

profile was derived every minute. The vertical resolution of these data is 7.5 m,219

i.e., one AEC was determined in one profile 7.5m away from the next one.220

The blind spot of these lidars is 100 m, i.e., these systems cannot effectively221

capture AEC data between the height of 100 m and the surface. The temporal222

and vertical resolution of the AEC profiles captured by the lidar in Beijing are223

1 h and 15 m, respectively, and the blind spot of this lidar system is 210 m. To224

improve the effects of DA, it is necessary to first perform quality control on225

and preprocess the original AEC profiles. This will ensure that the data are of226

relatively high temporal and spatial representativeness and that the Lidar data227

match the numerical model in terms of temporal and spatial resolution.228
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Quality control mainly involves four steps. (1) Entire AEC profiles passing229

through low clouds and AEC measurements in mid- and high-cloud regions230

are eliminated. An AEC profile is deemed to pass through low clouds when231

the AEC in the near-surface layer (below 150 m) is lower than 3,000×10-6 m-1232

and there is an AEC higher than 5,000×10-6 m-1 below 800 m. AEC233

measurements in mid- and high-cloud regions are determined as follows: If the234

AEC in the near-surface layer (below 150 m) is lower than 3,000×10-6 m-1,235

then measurements higher than 5,000×10-6 m-1 on the AEC profile are of236

AECs in mid- and high-cloud regions. (2) AEC profile data are subjected to237

maximum and minimum control. AEC measurements higher than 3,000×10-6238

m-1 are each reassigned with a value of 3,000×10-6 m-1. AEC measurements239

lower than 20×10-6 m-1 are eliminated. (3) Spatial continuity verification.240

Valid data should be continuous within a certain continuous vertical space Lcon241

which is set to be 90 m in this study. Specifically, two metrics are used to242

examine the spatial continuity of data. First, the profile with vertical resolution243

Lres is examined. After the first two steps of quality control, the remaining244

number of data points (Nremain) within the Lcon should not be less than 1/3 the245

total number of data points within the Lcon (Ntotal= Lcon/Lres); otherwise, it is246

considered that no valid data are available for the center of the Lcon. Second,247

the deviation of the valid data from the mean value of the data within the Lcon248

does not exceed 3times the standard deviation (SD). (4) Blind detection spot249

verification. Data within the blind spot of a lidar are eliminated. In addition,250

considering that lidar signals are relatively weak and AMCs are very low251

above 5,000 m, data for the region above 5,000 m are also eliminated in this252

study.253

Preprocessing of quality control-treated AEC profiles involves two steps.254

(1) Temporal and spatial smoothing. Profiles are subjected to moving255

averaging over 30 m in the vertical direction. Temporally, AEC profiles are256

also averaged over the past hour. (2) Data thinning. Only one valid data point257
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is selected for assimilation between two adjacent model layers in the vertical258

direction. In this study, the nearest data below each model layer are selected259

for assimilation. After processing, the number of assimilated AEC260

measurements on each profile does not exceed 25.261

PM2.5 and PM10 data (hereinafter referred to as PM data) used in this262

study, including 1-h MC data collected at more than 1,500 ground263

environmental monitoring stations, originated from the China National264

Environmental Monitoring Center. Most of the monitoring stations are265

distributed in cities in economically developed regions, including the Yangtze266

River Delta, the Beijing–Tianjin–Hebei region, and the Pearl River Delta. Of267

these monitoring stations, more than 790 are located within the D02 region268

(Figure 1). DA experiments are performed in this study based on PM data269

collected between 00:00 and 12:00 UTC on November 13, 2018. Subsequently,270

forecasts for PM2.5 from 12:00 UTC on November 13, 2018 to 12:00 UTC on271

November 14, 2018 are produced. In addition, the effects of DA on the272

forecast performance of the model are evaluated based on surface PM2.5273

measurements. To improve the effects of DA and the representativeness of the274

evaluation metrics, the original PM data are subjected to quality-control and275

preprocessing treatments. Quality control mainly involves two steps. (1)276

Anomaly elimination. Measurements that remain unchanged over a continuous277

period of 24 h are considered anomalous records and removed. (2) Maximum278

and minimum control. PM2.5MC measurements higher than 600 μg/m3,279

PM10MC measurements higher than 1,200 μg/m3, and PM MC measurements280

less than 0 are considered anomalies and removed. During the DA and281

verification processes, there may be multiple PM MC measurements for one282

grid cell. To allow the measurements to represent the average PM MC within283

a certain area, the PM data used for DA and verification are subjected to284

grid-cell averaging. The PM data used for assimilation are averaged within285

5×5 grid cells. Specifically, the PM data within the same 5×5 grid cell area are286
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first examined to determine their spatial consistency. Data greater than twice287

the SD are removed. Then, the arithmetic mean of the data within the area is288

calculated and assimilated. The PM2.5MC measurements used for verification289

and model forecasts are averaged within 1×1 grid cells. Specifically, model290

forecasts are first interpolated to the location of each ground environmental291

monitoring station. Then, the arithmetic mean of the measured and forecasted292

values within the same grid cell is calculated and used as a sample for293

quantifying the evaluation metrics. The processed PM MC data for the D01294

and D02 regions are all assimilated. Only the PM2.5MC data for the D02295

region are used to evaluate the effects of DA. After the grid-cell averaging296

treatment, approximately 190 data points in the D02 region are assimilated297

each time.298

2.3. Basic theoretical DAmodel299

To mathematically achieve 3D variational DA, it is necessary to establish300

an objective function to transform the DA problem to a problem of finding the301

extreme value of the function. By calculating the extreme value of the function302

using the variational method, an “optimal” analysis field will be obtained. The303

following shows the mathematical form of such a function:304

)()(
2
1)()(

2
1)(J 11 yHxRyHxxxBxxx TbTb   (1)

This function describes the sum of the distance between the analysis field305

(x) and the background field (xb) and the distance between the analysis field (x)306

and the observation field (y), with the background error covariance B and the307

observation error covariance R as weights, respectively. In Equation (1), x is308

the control variable in the DA system, which is a one-dimensional (1D) vector309

composed of aerosol variables at all the 3D grid cells in the DA analysis field;310

xb is the background value (or best guess) of the control variable (as the311

forecast level of AQM increases, model forecasts are generally used as312
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background fields); B is the background error covariance; y is the observation313

variable, which is a 1D vector composed of all the measurements; H is the314

observation operator, which maps the control variable to the observation space315

to ensure that the observation data can provide observation information for the316

control variable even if they are not direct measurements of the control317

variable; and R is the observation error covariance. For simultaneous318

assimilation of two or more types of observation data, the second term on the319

right side of Equation (1) can be expanded to multiple terms, each of which320

corresponds to one type of observation data. This will facilitate the321

simultaneous assimilation of observation data from various sources.322

2.4. Control variables and B323

The MOSAIC_4bins aerosol scheme adopted in this study can describe324

eight aerosol types, namely, black/elemental carbon (EC/BC), organic carbon325

(OC), sulfates (SO42−), nitrates (NO3−), ammonium salts (NH4+), chlorides326

(Cl−), sodium salts (Na+), and other unclassified inorganic compounds (OIN).327

There are four particle-size bins (4bin) for each aerosol type, namely,328

0.039–0.1, 0.1–1.0, 1.0–2.5, and 2.5–10 µm. Thus, there are a total of 32329

model variables that describe aerosols. Due to limitations of computer330

memory and computational capacity, there cannot be an excessively large331

number of control variables. In addition, fine (PM2.5) and coarse (PM2.5–10)332

particles differ relatively significantly in AEC. Thus, two control variables,333

namely, the sum of the first three particle-size bins (corresponding to fine334

particles) and the fourth particle-size bin (corresponding to coarse particles),335

are designed for each aerosol type, so that there are 16 control variables are336

designed in this study for the DA scheme namely EC2.5, EC2.5-10, OC2.5,337

OC2.5-10, SO42.5, SO42.5-10, NO32.5, NO32.5-10, NH42.5, NH42.5-10, CL2.5, CL2.5-10,338

NA2.5, NA2.5-10, OIN2.5, OIN2.5-10.339

Calculation associated with B is burdened with two problems: (1) An340
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overly large scale of B. In this scheme, B contains 3.5×1014 (= 16 (number of341

control variables) × 175 × 166 × 40 (number of grid cells)) elements. Thus, it342

is necessary to mathematically treat and approximately simplify B to facilitate343

numerical calculations. Following the method used by Li et al. (2013) and344

Zang et al., (2016), B is decomposed into a background-error SD matrix and a345

background-error correlation coefficient matrix for calculations. (2) As the346

true value of B is unknown, it is necessary to develop a reasonable statistical347

method to estimate it. The National Meteorology Center (NMC) method348

(Parrish and Derber, 1992) is employed in this study to statistically estimate B.349

Specifically, the differences between 48h and 24h forecasts of control350

variables are assumed to be a proxy of background error. Then, B is estimated351

based on the covariance of the difference field, which is obtained by352

producing continuous 24h and 48h forecasts for a month using the353

WRF–Chem model.354

2.5. Observation forward operator and its ajoint355

The observation forward operator involves two steps of calculation. (1)356

The control variables at each grid cell are mapped to the observation space,357

i.e., the control variables are mapped to AEC values (or PM2.5 and PM10MCs).358

(2) The mapped values at the eight vertices of the model grid cell associated359

with the observation data are interpolated using the inverse distance-weighted360

method to the observation location. Here we only describe the first step of the361

observation operators which is different for different observation data.362

The AEC observation operator is based on the IMPROVE equation. The363

following shows the specific form of the IMPROVE equation:364

Ext=3.025×fs(RH)×[Small Sulfate]+
6.6×fl(RH)×[Large Sulfate]+
3.096×fs(RH)×[Small Nitrate]+
6.579×fl(RH)×[Large Nitrate]+
5.04×[Small Organic Mass]+
10.98×[Large Organic Mass]+
10.0×[Elemental Carbon]+

(2)
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1.0×[Fine Soil]+
1.7×fss(RH)×[Sea Salt]+
1.0×[Coarse Mass]

The left side of Equation (2) is the AEC value Ext (unit: 10-6 m-1). The365

variables in the brackets on the right side of Equation (2) are combinations of366

the 16 control variables (unit: μg/m3). The coefficient variables fs(RH), fl(RH),367

and fss(RH) reflect the effects of hygroscopicity of fine, coarse, and sea-salt368

aerosols in various relative humidity (HR) conditions on extinction efficiency,369

respectively. The values of parameters given by Gordon et al. (2018) are used370

in this study. The variables (in the square brackets) at each grid cell are371

obtained by combining the 16 control variables using the following method:372

Sulfate=SO42.5+α×NH42.5.373

The principle for determining α is: NH42.5 is preferentially allocated to374

SO42.5, and the remaining NH42.5 is allocated to NO32.5.375










 20,e

20
-1

20,0
][ SulfateSulfatSulfate

Sulfate
SulfateSmall

）（376

[Large Sulfate]= Sulfate- [Small Sulfate]377
Nitrate =NO32.5+(1-α) (NH42.5)378










 20,

20
-1

20,0
][ NitrateNitrateNitrate

Nitrate
NitrateSmall

）（
(3)379

[Large Nitrate]= Nitrate - [Small Nitrate]380
[Organic Mass] =OC2.5381










 20][,][

20
][-1

20][,0
][ MassOrganicMassOrganicMassOrganic

MassOrganic
MassOrganicSmall

）（382

[Large Organic Mass] = [Organic Mass]- [Small Organic Mass]383
[Elemental Carbon]=EC2.5384
[Fine Soil]=OIN2.5385
[Sea Salt]=CL2.5+NA2.5386
[Coarse Mass]=SO42.5-10+NO32.5-10+NH42.5-10+OC2.5-10+387

EC2.5-10+CL2.5-10+NA2.5-10+OIN2.5-10388

The observation operator for each of PM2.5 and PM10 is the sum of389

control variables in the corresponding particle-size bin, i.e.,390

PM2.5=SO42.5+NO32.5+NH42.5+OC2.5+EC2.5+CL2.5+NA2.5+OIN2.5 (4)391
PM10=SO42.5+NO32.5+NH42.5+OC2.5+EC2.5+CL2.5+NA2.5+OIN2.5+392
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SO42.5-10+NO32.5-10+NH42.5-10+OC2.5-10+EC2.5-10+CL2.5-10+NA2.5-10+OIN2.5-10 (5)393

The corresponding adjoint operators for PM and AEC are developed and394

passed the adjoint sensitivity test. The adjoint test method please refer Zou et395

al.(1997).396

2.6. DA and forecast experimental design and verification analysis method397

To analyze the effects of DA on aerosol analysis and forecasts, one398

control experiment with unassimilated data and three DA experiments are399

designed for a pollution event that occurred from November 13 to 14, 2018400

(Table 1). In the control experiment, no chemical observation data are401

assimilated. Forecasts are produced for a 36-h period, starting at 0000 UTC on402

November 13, 2018. In the DA experiments, hourly aerosol data for the period403

0000–1200 UTC on November 13, 2018 are assimilated. Then with the404

analysis field obtained from DA as the initial chemical field, forecasts are405

performed for a 24-h period starting at 1200 UTC on November 13, 2018. The406

period 0000–1200 UTC on November 13, 2018 is set as DA period. For the407

DA period, the first DA (0000 UTC on November 13, 2018) is performed with408

the initial field of the control experiment as the background field. By409

assimilating the observation data for 0000 UTC on November 13, 2018, a DA410

analysis field is generated for this time point. With this DA analysis field as411

the initial field at 0000 UTC, November 13, 2018 in the DA experiment, 1-h412

forecasts are produced. And the forecasts produced for 0100 UTC, November413

13, 2018 are used as the background field for the second DA. The process is414

repeated until 13 assimilation cycles are completed. Thus, a DA analysis field415

for 1200 UTC, November 13, 2018 is generated. The period from 1200 UTC,416

November 13, 2018 to 1200 UTC, November 14, 2018 is selected to compare417

model forecasts. The effects of DA on forecast performance can be analyzed418

by comparing the DA and control experiments in terms of forecast419

performance. The three DA experiments differ in assimilated data. In the first420

DA experiment (DA_PM), PM data alone are assimilated. In the second DA421
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experiment (DA_Ext), lidar data alone are assimilated. In the third DA422

experiment (DA_PM_Ext), PM and lidar data are assimilated simultaneously.423

Furthermore, 0.25°×0.25° 6-h reanalysis data provided by the U.S. National424

Centers for Environmental Prediction (NCEP) are used as the meteorological425

field of the model.426

Two metrics, namely, regional mean and root-mean-square error (RMSE),427

are used to evaluate simulation and forecast accuracy for PM2.5MCs in the428

experiments. The closer the mean of simulated values is to the mean of429

measurements and the smaller the RMSE is, the higher the performance is. Let430

Mi, Oi, N, M , and O be the simulated value sample, the measured value431

sample, the number of samples, the mean of simulated values, and the mean of432

measurements, respectively. The following summarizes the equation for433

calculating each metric:434




N

i
iM

N
M

1

1
（6）435




N

i
iON

O
1

1
（7）436

 


N

i
ii OM

N 1

2)(1RMSE （8）437

3. Results438

3.1. SD and vertical correlation coefficient of the background error439

(BESD and BEVCC)440

Under the same conditions, the larger the BESD is, the greater the441

increment caused by DA is. Therefore, the structural pattern of the BESD will442

significantly affect the distribution pattern of the DA increment field. Figure 2443

shows the vertical BESD profiles of the 16 control variables. As demonstrated444

in Figure 2, the BESD differs relatively significantly between control variables.445

The seven control variables with the largest BESDs below the height of 1,000446

m (corresponding to the 22nd layer of the model) in descending order of BESD447

are: OIN2.5-10, NO32.5, OIN2.5, NH42.5, SO42.5, OC2.5, and EC2.5. As height448
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increases, the BESD of each control variable decreases. The rates of increase449

are the highest above the boundary layers at heights of 1,000–2,000 m450

(corresponding to the 20th–25th layers of the model).451

The BEVCC matrix can affect the vertical transference range of452

observation information. Even the PM data are only available at surface, there453

will still be DA increments of PM in near-surface in-air after PM DA.454

Similarly, even no near-surface lidar data are available, assimilating lidar data455

can still correct the surface PM2.5MC distribution. Figure 3 shows the BEVCC456

matrices of six control variables with relatively large BESDs (OIN2.5-10,457

NO32.5, OIN2.5, NH42.5, SO42.5, and OC2.5). As demonstrated in Figure 3, the458

BEVCCs of the control variables share certain common characteristics. The459

correlation decreases as the interlayer spacing of the model increases. Each460

in-air layer is positively correlated with the surface layer, though the461

correlation decreases as height increases. OIN2.5-10 has a significantly weaker462

vertical correlation than the other variables. For OIN2.5-10, the correlation463

coefficient between the surface and 10th layers is 0.34, compared with464

0.49–0.51 for other variables. This is mainly because coarse particles settle465

faster than fine particles and are concentrated near the surface in larger466

quantities.467

3.2. Analysis of the pollution process468

Figure 4 shows the evolutionary process of surface PM2.5MC469

measurements and the NCEP reanalysis surface wind field in the D02 region470

for the period from 0000 UTC, November 13, 2018 to 1200 UTC, November471

14, 2018 (the time interval between Figure 4a, b, c, and d is 12 h). As472

demonstrated in Figure 4a, at 0000 UTC on November 13, 2018, the D02473

region was predominantly controlled by a high-pressure circulation centered474

over Zibo in central Shandong province. There was a clockwise wind field475

around the high-pressure center. There were northerlies (easterlies) east (south)476
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of the high-pressure center, bringing clean air over the sea landward. As a477

result, PM2.5MCs in East China were relatively low. For example, the mean478

PM2.5MC measured at the ground environmental monitoring stations in479

Nanjing, Jiangsu province, was 41.8 μg/m3. There were relatively slow480

southerlies west and northwest of the high-pressure center. This led to481

favorable conditions for pollutant accumulation east of the Taihang Mountains482

and south of the Yan Mountains. As a result, North China was relatively483

heavily polluted by PM2.5. For example, the mean PM2.5MCs in Beijing and484

Shijiazhuang, Hebei Province, were 122.7 and 149.3 μg/m3, respectively. In485

addition, within the region, there was also a northeast–southwest-trending cold486

front near Buyant-Ovoo–Bayan-Ovoo in Mongolia. As time passed (Figure 4b,487

c, and d), the high-pressure center gradually moved northeastward and had488

reached near the eastern boundary of the region by 1200 UTC, November 14,489

2018 (Figure 4d). The cold front gradually moved southeastward and had490

reached the Chaoyang–Beijing–Taiyuan–Xi’an line by 1200 UTC, November491

14, 2018 (Figure 4d). As the high-pressure center and the cold front moved,492

the level of pollution in North China continued to rise, and pollution gradually493

expanded northeastward (Chaoyang, Liaoning Province), southward494

(Zhengzhou, Henan Province), and westward (Taiyuan, Shanxi Province). Due495

to the dual action of the advective transport by easterlies and the narrow496

terrain, the level of pollution gradually increased in the Wei and Yellow River497

Valleys east of Xi’an, Shaanxi Province. Thanks to good dispersion conditions,498

PM2.5MCs decreased considerably upon the passing of the cold front. There499

were no significant changes in PM2.5MCs in East China, owing to the500

continuous impact of sea winds.501

3.3. Analysis of the direct affects of DA502

Figure 5 shows the AEC profiles captured at four lidar stations at 0000503

UTC, November 13, 2018 as well as the corresponding AEC profiles in the504
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analysis fields of the control and DA experiments and the simulated RH505

profiles. The first DA is performed for 0000 UTC, November 13, 2018. The506

results of the control experiment are used as the background field in the three507

DA experiments. Figure 5a, b, c, and d show the results for Beijing,508

Shijiazhuang, Taiyuan, and Wuhu, respectively. As demonstrated by the RH509

profiles (brown lines) in Figure 5, the RH in air below 1 km is basically510

consistent with the surface RH. Thus, vertical changes in AEC values below 1511

km are relatively insignificantly affected by RH, and the AEC profiles can512

describe vertical changes in PM2.5MC profiles. A comparison of lidar AEC513

profiles (black lines) and those obtained from the control experiment (blue514

lines) finds that AEC values obtained from the control experiment are515

relatively underestimated for Shijiazhuang (Figure 5b) and Taiyuan (Figure516

5c), particularly near the height of 100 m (starting height for lidar data). In517

comparison, AEC values for Wuhu (Figure 5d) obtained from the control518

experiment are higher than the lidar measurements, while the AEC profile for519

Beijing (Figure 5a) obtained from the control experiment is in relatively good520

agreement with the lidar AEC profile. The AEC values for the Beijing (Figure521

5a), Taiyuan (Figure 5c), and Wuhu (Figure 5d) stations obtained from the522

DA_PM experiment (green lines) based on assimilated surface PM MC523

measurements are lower than those obtained from the control experiment. This524

is because the surface PM MC measurements used in the control experiment525

for these three stations are relatively high. As a result of the BEVCC (Figure526

3), PM DA will reduce the AEC values in lower in-air layers while reducing527

surface PM MCs. In the DA_PM experiment, the adjustment made to the AEC528

profiles for Beijing and Wuhu is, overall, positive, but the adjustment made to529

the AEC profile for Taiyuan increases the underestimation of in-air AEC530

values.531

Compared to the DA_PM experiment, vertical aerosol distribution532

patterns obtained from the DA_Ext experiment (purple lines) are more finely533
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adjusted. For example, the AEC values obtained from the DA_Ext experiment534

for the Taiyuan station (Figure 5c) for the heights of approximately 100 and535

700 m are significantly higher than those obtained from the DA_PM536

experiment and are consistent with those on the lidar AEC profile (black line).537

The AEC profile obtained from the DA_Ext experiment for the Wuhu station538

(Figure 5d) is very close to the lidar AEC profile. This suggests that the AEC539

observation operator designed based on the IMPROVE equation effectively540

facilitates 3D variational assimilation of lidar AEC data. In addition, due to541

the BEVCC (Figure 3), lidar DA will increase (decrease) surface PM MCs542

while increasing (decreasing) in-air PM MCs. This surface PM MC543

adjustment effectively corrects the overestimation of surface PM2.5MCs in544

Beijing and Wuhu in the control experiment but increases the overestimation545

of surface PM2.5MCs in Taiyuan.546

The in-air AEC profiles obtained from the DA_PM_Ext experiment (red547

lines) for the four cities almost coincide with those obtained from the DA_Ext548

experiments above 400 m. The near-surface AEC values obtained from549

DA_PM_Ext experiment for Beijing (Figure 5a) almost coincide with those550

obtained from the DA_PM experiment. The near-surface AEC values obtained551

from DA_PM_Ext experiment for Taiyuan (Figure 5c) are between those552

obtained from the DA_PM and DA_Ext experiments. The near-surface AEC553

values obtained from DA_PM_Ext experiment for Wuhu (Figure 5d) are554

lower than those from the DA_PM and DA_Ext experiments. This suggests555

that simultaneously assimilating two types of data can fully integrate their556

observation information and reflect their respective advantages and, on this557

basis, generate the most accurate analysis field.558

Figure 6 shows the AEC profiles at 1200 UTC, November 13, 2018559

measured at four lidar stations as well as the corresponding AEC profiles560

obtained from the control experiment and the background and analysis fields561

of the DA experiments. A total of 13 DA cycles are performed for the period562
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00:00–12:00 UTC, November 13, 2018. The time of 1200 UTC, November 13,563

2018 is the last time point of the DA period and the starting time point of the564

forecast period. The background field for each of the three DA experiments is565

generated during the continuous DA period, whereas the results of the control566

experiment are obtained by forecasting starting at 0000 UTC, November 13,567

2018. As a result, there is a relatively significant difference between the568

background fields of the three DA experiments and the results of the control569

experiment.570

As demonstrated in Figure 6, the results of the DA_PM experiment571

(green lines) show significant PM2.5MC increments below 1 km. The problem572

of near-surface overestimation for the four cities in the control experiment is573

corrected in the DA_PM experiment. This suggests that the DA yields a574

positive effect. However, compared to those from the control experiment, the575

AEC values obtained from the DA_PM experiment for Taiyuan at heights of576

120–400 m (Figure 6c) and Wuhu above 400 m (Figure 6d) are even more577

underestimated, suggests that the DA yields a negative effect here. It is worth578

noting that there are very small direct DA increments (i.e., the differences579

between the solid and dotted green lines) generated in the DA_PM experiment580

at this time point. This means that for surface PM DA, a DA period of 11 h or581

less is sufficient to effectively adjust aerosol distribution. This is because582

aerosols are primarily concentrated near the surface and surface PM data cover583

a wide area and have a high spatial resolution, so surface PM data measured at584

a few time points contain the main aerosol distribution information for the585

whole region.586

Compared to the DA_PM experiment, the DA_Ext experiment (purple587

lines) reflects the advantages of AEC DA in adjusting vertical aerosol588

distribution. The problem of overestimation for Beijing above 300 m (Figure589

6a), Taiyuan above 600 m (Figure 6c), and Wuhu below 400 m (Figure 6d) in590

the control experiment is effectively corrected in the DA_PM experiment. In591
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addition, the results of the DA_Ext experiment reflect the rapid decrease in592

PM2.5MC with a height below 1 km in Beijing (Figure 6a) and the presence of593

a maximum-PM2.5MC layer at the height of 1.3 km in Wuhu (Figure 6d).594

However, the near-surface overestimation for Taiyuan (Figure 6c) is increased595

in the DA_Ext experiment. Moreover, the direct DA increments (i.e., the596

differences between the solid and dotted purple lines) generated in the597

DA_Ext experiment at this time point remain notable. This suggests that the598

error of the background field at each lidar station at 1200 UTC on November599

13, 2018 remains relatively large, even after a continuous DA period of 12 h.600

To improve the effects of DA, it is necessary to increase the length of the601

continuous DA period. This may be because there are few lidars and the lidars602

are relatively far apart from one another. As a result, the simulation error for603

the region upstream of the lidar is difficult to be corrected through DA and604

will affect the lidar locate under advection at the next time point.605

The AEC profiles obtained from the DA_PM_Ext experiment (solid red606

lines) compared to the other two DA experiments show that the problem of607

overestimation for Beijing above 400 m (Figure 6a), Shijiazhuang above 300608

m (Figure 6b), and Wuhu in the near-surface layer(Figure 6d) in the control609

experiment is considerably corrected in the DA_PM_Ext experiment. The610

results of the DA_PM_Ext experiment reflect the advantage of simultaneously611

assimilating two types of data in integrating their observation information.612

This finding is consistent with Figure 5.613

Figure 7 shows the surface PM2.5MCs measured at 1200, November 13,614

2018 as well as the corresponding initial field of the control experiment and its615

error and the distribution of differences between the initial fields of the control616

and DA experiments. As demonstrated in Figure 7a and 7b, the simulation617

results obtained from the control experiment show that PM2.5MCs are618

relatively high in North China. In particular, there is a heavily polluted zone in619

the Beijing–Shijiazhuang–Zhengzhou region, and PM2.5MCs are relatively low620
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in the region surrounding North China. However, as demonstrated in Figure 7c,621

PM2.5MCs obtained from the control experiment are overestimated for most622

regions. In particular, PM2.5MCsobtained from the control experiment are623

relatively highly overestimated for the Beijing–Shijiazhuang–Zhengzhou624

region. In comparison, PM2.5MCs obtained from the control experiment are625

underestimated for the region near Chaoyang, Liaoning Province. The626

distribution trends in Figure 7c and d are relatively consistent. This indicates627

that the overestimation for most regions and the underestimation for some628

regions in the initial field of the control experiment are corrected by PM DA.629

As a result, the analysis field of the DA_PM experiment is closer to the630

measurements.631

A comparison of Figure 7c and 7e finds that significant DA increments632

are generated in the DA_Ext experiment in the regions surrounding the five633

lidar stations and the regions downstream of the wind field (Figure 4). Certain634

DA increments are also present in regions far away from the lidar stations.635

This indicates that long-term continuous assimilation of lidar measurements636

can affect a relatively large area. Overall, AEC DA (from the DA_Ext637

experiment) corrects the overestimation for most regions and the638

underestimation for some regions in the initial field of the control experiment.639

However, DA increments on the surface generated in the DA_Ext experiment640

are smaller than those generated in the DA_PM experiment in terms of641

horizontal spatial range and magnitude. This is mainly because there are642

relatively few lidars and these lidars cover a limited spatial area. It is worth643

noting that AEC DA yields a negative effect for northern Beijing and the644

region around Taiyuan. For northern Beijing, the negative effect results645

primarily from the notable overestimation for the location of the Beijing lidar646

station, whereas the overestimation for northern Beijing is relatively low, and647

there is even an underestimation for the locations of some individual stations648

north of Beijing (Figure 7c). As a result, a negative effect is generated after649
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the DA increment at the location of the lidar station is transferred to northern650

Beijing. For Taiyuan, the cause of the negative effect is similar to that seen in651

Figure 5. According to the lidar measurements, the observation background652

error at the height of approximately 100 m in the control experiment is653

positive, i.e., there is an underestimation. However, according to the surface654

PM MC measurements, the surface observation background error in the655

control experiment is negative, i.e., there is an overestimation. Due to the656

impact of the BEVCC, lidar DA will increase surface PM MCs while657

increasing in-air PM MCs. This will lead to an increased overestimation of658

surface PM MCs. There are two reasons for the presence of opposite in-air and659

surface observation background errors. On the one hand, the simulation error660

of the model is nonuniform in the vertical direction. On the other hand, the661

opposite errors may be because the observation information in the lidar and662

PM data was obtained from air parcels differing relatively significantly in663

PM2.5MCs in the horizontal direction. PM2.5MCs measured at 1200 UTC,664

November 13, 2018 at three ground environmental monitoring stations within665

6 km of the Taiyuan lidar station were 80.0, 137.0, and 146.0μg/m3,666

respectively. As also demonstrated in Figure 7a, PM2.5MC measurements were667

relatively low at most stations near Taiyuan (blue) but very high at two668

stations (red). A similar phenomenon can be observed for the measurements669

taken between 0000 and 1100 UTC. This suggests a relatively large horizontal670

PM2.5MC gradient near Taiyuan. The lidar and ground environmental671

monitoring stations were situated at different locations. This led to a relatively672

significant difference in PM2.5MC data acquired in air parcels at the lidar and673

ground environmental monitoring stations. All of this suggests that particular674

attention should be paid to the horizontal spatial representativeness of lidar675

data during the DA process.676

A comparison of the results of the three DA experiments finds that the677

results of the DA_PM_Ext experiment are in relatively good agreement with678
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those of the DA_PM experiment. This is mainly because the PM data are far679

greater than the lidar data in terms of quantity and spatial coverage. As a result,680

the DA increments in surface PM2.5 concentrations originate primarily from681

the observation information in the PM data. However, by analyzing Figures 5682

and 6, it can be reasonably inferred that as height increases, the analysis field683

of the DA_PM_Ext experiment will include more observation information in684

the lidar data and thereby more accurately reflect the 3D spatial distribution685

pattern of aerosols.686

3.4. Effects of DA on the forecast performance for surface PM2.5MCs687

In this section, the effects of DA on forecast performance for aerosols are688

evaluated based on approximately 430 surface PM2.5MC measurements that689

cover most of the D02 region.690

Figure 8 shows the trend of the variation in the regional mean PM2.5MC691

with time in each of the four experiments. As demonstrated in Figure 8, the692

variation in PM2.5MC measurements (black line) exhibits a notable diurnal693

pattern. Two notable minimum PM2.5MCs (69.1 and 77.9 μg/m3) appeared at694

0800 UTC (1600 local time), November 13, 2018 and 0800 UTC (1600 local695

time), November 14, 2018, respectively. High PM2.5MCs appeared between696

1300 UTC, November 13, 2018 and 0200 UTC, November 14, 2018 (from697

night to morning). The maximum PM2.5MC was 96.0 μg/m3. However, there698

was a relative minimum PM2.5MC (87.0 μg/m3) appearing at 2200 UTC,699

November 13, 2018 (around dawn local time) during the high-PM2.5-MC700

period. Comparing the control experiment with the measurements finds that701

the experiment simulates the periodic variation pattern of the mean PM2.5MC702

(solid blue line). However, PM2.5MCs obtained from the control experiment703

are significantly overestimated for the whole forecast period. The PM2.5MC704

obtained from the control experiment for the initial time point (1200 UTC,705

November 13, 2018) is overestimated by 36.3 μg/m3 (39.3%).706
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The overestimation in the control experiment is significantly reduced in707

the DA_PM experiment (green line, which, partially, almost coincides with708

the red line). The mean PM2.5MC obtained from the DA_PM experiment for709

1200 UTC, November 13, 2018 (91.4 μg/m3) is lower than that obtained from710

the control experiment (128.6 μg/m3) by 37.2 μg/m3 （28.9%）and is closer to711

the measurement (92.3 μg/m3). As a result of the decrease in the MC level in712

the initial field, the PM2.5MC forecasts obtained from the DA_PM experiment713

are significantly lower than those obtained from the control experiment for the714

whole forecast period. This suggests that the overestimation of the initial field715

is the primary cause of the overestimated forecasts obtained from the control716

experiment. In addition, DA can improve forecast results over a long time by717

optimizing the initial field. In the DA_PM experiment, the effects of PM DA718

last for more than 24 h. As demonstrated by the results of the DA_Ext719

experiment (purple line), while there are only five lidars within the region,720

AEC DA can still significantly correct the overestimation error of the initial721

field and improve forecast performance. Compared to those in the DA_PM722

experiment, the DA increments generated in the DA_Ext experiment are723

relatively small and affect forecast results for a relatively short time724

(approximately 21 h). This is mainly a result of the relatively small number of725

lidars. There was no significant difference between the results of the726

DA_PM_Ext (red line) and DA_PM (green line) experiments at surface. This727

suggests that after surface PM DA, lidar DA relatively insignificantly affects728

surface PM2.5MCs. This happens for two reasons. On the one hand, similar to729

the analysis of Figure 7f, of the two types of assimilated data, the proportion730

of PM data is far greater than that of lidar data. On the other hand, after731

surface PM DA, lidar DA affects surface aerosol forecasts mainly by adjusting732

in-air AMCs and, on this basis, indirectly affects surface AMC forecasts by733

processes such as settling. However, in this simulation process, surface AMC734

remains at relatively high levels. Moreover, due to the relatively stable735
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meteorological conditions and weak vertical air movement in the simulation736

region, particularly the heavily polluted zone, the indirect effects of lidar DA737

are far smaller than the direct effects of PM DA on surface AMCs.738

Figure 9 shows the variation in the RMSE of surface PM2.5MC forecasts739

with time. A comparison of the RMSEs from the control experiment (blue line)740

in Figure 9 and the mean PM2.5MCs obtained from the control experiment in741

Figure 8 finds that the RMSEs for simulations and forecasts are relatively742

large (small) at a relatively high (low) aerosol pollution level. As743

demonstrated in Figure 9, the RMSE in the control experiment for the initial744

time point (1200 UTC, November 13, 2018) of the forecast period is 59.6745

μg/m3. Throughout the forecast period, the RMSE fluctuates between 44.5 and746

67.1 μg/m3, instead of linearly increasing or decreasing. The RMSEs from the747

DA_PM (green line), DA_Ext (purple line), and DA_PM_Ext (red line)748

experiments for the initial time point are 21.0, 49.1, and 21.2 μg/m3,749

respectively, which are 38.6 (64.8%), 10.5 (17.6%), and 38.4 (64.4%) μg/m3750

lower than that for the control experiment. This suggests that the error of the751

initial field is reduced in each of the three DA experiments. Thanks to an752

optimized initial field, the RMSE of the forecasts produced in each of the DA753

experiments is lower than that for the forecasts produced in the control754

experiment. The RMSEs of the forecasts produced in the Da_PM, Da_Ext,755

and DA_PM_Ext experiments for the 24th forecast hour are 6.1 (11.8%), 1.5756

(2.9%), and 6.5 (12.6%) μg/m3 smaller than that of the forecast produced in757

the control experiment, respectively. This suggests that the optimization of the758

initial field has a lasting (more than 24 h in all cases) positive effect on model759

forecasts. It is worth noting that while there are very few lidar stations, the760

results of the DA_Ext experiment are still better than those of the control761

experiment, and the results of the DA_PM_Ext experiment are also slightly762

better than those of the DA_PM experiment. This indicates that even in763

relatively low quantities, lidar data still improve the forecast performance of764
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the model. As lidar data become increasingly rich and provide more vertical765

and horizontal aerosol distribution information in future, lidar DA will further766

improve PM2.5MC forecasts.767

4. Discussion768

In Figure 7e, the relatively large AMC gradient in Taiyuan leads to769

opposite in-air and surface observation background errors , which lead to a770

negative effect of lidar DA for the surface. This suggests that the spatial771

representativeness of lidar data relatively significantly affects the impact of772

lidar AEC DA. In addition, the vertical resolution of lidar data (smaller than773

15 m) is far smaller than the spacing between adjacent height layers of the774

model. As a result, the representative spatial scale of original lidar data does775

not match the resolution of the model. To improve the horizontal spatial776

representativeness of the lidar data, the lidar data of the past hour are averaged777

in this experiment as the lidar AEC profile for the time point. The vertical778

spatial representativeness of the data is improved by smoothing over 30 m in779

the vertical direction. However, the time-averaged lidar data represent780

observation information for a certain area downstream of the wind field. This781

representativeness error needs addressing in subsequent studies. Moreover,782

selection of a time averaging window length and a vertical smoothing length783

also requires further investigation.784

For the Beijing region in Figure 7e, as a result of the relatively significant785

difference between the simulation error for the region downstream of the wind786

field and that for the location of the lidar station, the downstream transference787

of lidar DA increments will cause a negative effect in the continuous DA788

process. The most direct and effective measure for addressing this problem is789

to increase the number of lidars and the coverage of lidar network. This790

measure will ensure that the simulation error for the simulation region will be791

more comprehensively captured. However, lidar detection requires great792
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amounts of labor and financial resources. Therefore, it is difficult to arrange793

lidar stations as densely as ground environmental monitoring stations. A794

relatively feasible method is to set a relatively small number of lidars in795

regions with relatively small spatial changes in the simulation error and set796

dense lidars in regions with significant spatial changes in the simulation error.797

This will make it possible to use the limited number of lidars to capture more798

useful information. Thus, studying the temporal and spatial distribution pattern799

of model simulation errors can provide a useful reference for future800

arrangement and planning of lidar stations. This merits further investigation.801

The AEC observation operator used in this study is designed based on the802

IMPROVE equation. The parameters of the IMPROVE equation, such as803

hygroscopicity coefficient, are directly set to values reported in previous804

studies. On the one hand, datasets used in previous studies were measured in805

specific regions. To date, no quantitative comparative analysis has yet to be806

performed to determine whether the extinction properties of aerosols differ807

between regions. Therefore, there is some uncertainty in the applicability of808

the IMPROVE equation. On the other hand, the values of the coefficients in809

the IMPROVE equation are determined by extensive statistical analysis of810

data. This dictates that these coefficients represent average levels under certain811

pollution and humidity conditions. There may be a certain error in these812

coefficients when applied to a specific observation event. This error will813

accumulate and amplify during the calculation of the forward and reverse814

processes of the observation operator, resulting in a negative effect of DA.815

Hence, how to effectively evaluate the applicability of the IMPROVE816

equation and more accurately adjust its coefficients is another issue that needs817

addressing.818

5. Conclusions819
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In this study, an observation operator and its adjoint is designed based on820

the IMPROVE equation to facilitate 3-DVAR assimilation of AEC data and a821

3-DVAR DA system is developed for lidar AEC data and surface AMC data822

for the MOSAIC-4bin chemical scheme in the WRF–Chem model. Three DA823

experiments (i.e., a PM2.5(PM10) DA experiment, a lidar AEC DA experiment,824

and a simultaneous PM2.5(PM10) and lidar AEC DA experiment) are conducted825

based on AEC profiles captured by five lidars (located in Beijing,826

Shijiazhuang, Taiyuan, Xuzhou, and Wuhu) in the period from 0000 to 1200827

UTC, November 13, 2018 as well as MC measurements for PM2.5 and PM10828

taken at over 1,500 ground environmental monitoring stations across China.829

DA and forecast results are evaluated based on MC measurements for surface830

PM2.5. A comparison with the control experiment involving no DA finds that831

the 3-DVAR DA system is effective at assimilating lidar AEC data. While832

there are only five lidars within the simulation region (approximately 2.33833

million km2 in size), assimilating AEC data acquired by these lidar alone can834

also effectively improve the accuracy of the initial field and the forecast835

performance of the model for PM2.5. Moreover, the positive effect resulting836

from the optimization of the initial field on forecast performance for PM2.5 can837

last for more than 24 h. Lidar AEC DA is advantageous because it improves838

the accuracy of the vertical PM2.5MC profile. Surface PM2.5(PM10) DA is839

advantageous because it optimizes the near-surface PM2.5MC distribution.840

Furthermore, simultaneous lidar AEC and surface PM2.5(PM10) DA can841

effectively help integrate their observation information to generate a more842

accurate 3D aerosol analysis field.843

844

Code and data availability:WRF-Chem model source code can be download845

at the WRF model download page (https://www2.mmm.ucar.edu/wrf/users/846

download/get_source.html). This 3-DVAR data assimilation system is847

developed by ourself. A version of the 3-DVAR code and lidar profile data for848
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Table 1. Numerical experiment schemes1023

Experiment Assimilated data
Assimilation

region

Continuous

assimilation

period

Forecast

comparison

period

Control N/A N/A N/A
11.13 12:00

–11.14 12:00

DA_PM PM2.5+PM10 D01/D02
11.13 00:00

–11.13 12:00

11.13 12:00

–11.14 12:00

DA_Ext Ext D01/D02
11.13 00:00

–11.13 12:00

11.13 12:00

–11.14 12:00

DA_PM_Ext PM2.5+PM10+Ext D01/D02
11.13 00:00

–11.13 12:00

11.13 12:00

–11.14 12:00

1024

1025

1026

1027

1028

1029
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1030

Figure 1 The double-nested experimental domain. Red triangle and labeling indicate the1031

locations and names of 5 lidars, and blue circle the locations of 1500 ground environmental1032

monitoring stations.1033

1034
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1035
Figure 2 Vertical BESD profiles of the 16 control variables1036
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1050
Figure 3 BEVCCs of six control variables1051
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1052

Figure 4 SurfacePM2.5MC measurements in the D02 region and NCEP reanalysis wind1053

field for the period from 0000 UTC, November 13, 2018 to 1200 UTC, November 14, 20181054

(CY: Chaoyang; BJ: Beijing; SJZ: Shijiazhuang; TY:Taiyuan; ZB: Zibo; X’A: Xi’an; ZZ:1055

Zhengzhou; NJ: Nanjing; Bu-O: Buyant-Ovoo; Ba-O: Bayan-Ovoo)1056

https://doi.org/10.5194/gmd-2020-223
Preprint. Discussion started: 31 July 2020
c© Author(s) 2020. CC BY 4.0 License.



42 of 46

1057

Figure 5 AEC profiles at 0000 UTC, November 13, 2018 measured at four lidar stations1058

(black lines) as well as the corresponding AEC profiles obtained from the control (blue1059

lines) experiment and the DA_PM (green lines), DA_Ext (purple lines) and DA_PM_Ext1060

(red lines) analysis fields and the simulated RH profiles (orange lines) (BJ: Beijing; SJZ:1061

Shijiazhuang; TY: Taiyuan; WH: Wuhu)1062
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1063
Figure 6 AEC profiles at 1200 UTC, November 13, 2018 measured at four lidar stations1064

(solid black lines) as well as the corresponding AEC profiles obtained from the control1065

experiment (solid blue lines) and the background (dotted lines) and analysis (solid lines)1066

fields of the DA experiments (BJ: Beijing; SJZ: Shijiazhuang; TY: Taiyuan; WH: Wuhu)1067
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1068
Figure 7 Surface PM2.5MCs measured at 1200 UTC, November 13, 2018 (a), as well as the1069

initial field (b) of the control experiment and its error (c) and the distribution of differences1070

between the initial fields of the control and DA experiments (d, e, and f) (black triangles1071

signify the locations of the lidar stations) (BJ: Beijing; SJZ: Shijiazhuang; TY: Taiyuan; ZZ:1072

Zhengzhou; XZ: Xuzhou; WH: Wuhu)1073
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1082
Figure 8 Variation in the regional mean PM2.5MC with time (the vertical orange line1083

separates the DA and forecast periods; the black line signifies measurements; the blue line1084

signifies the PM2.5MCs obtained from the control experiment; the green, purple, and red1085

lines signify the PM2.5MCs obtained from the DA_PM, DA_Ext, and DA_PM_Ext1086

experiments, respectively)1087
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1100
Figure 9 Variation in the RMSE of surface PM2.5MC forecasts with time (the vertical1101

orange line separates the DA and forecast periods; the blue line signifies the PM2.5MCs1102

obtained from the control experiment; the green, purple, and red lines signify the PM2.5MCs1103

obtained from the DA_PM, DA_Ext, and DA_PM_Ext experiments, respectively)1104
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